Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247.

نویسندگان

  • Y K Li
  • J Chir
  • F Y Chen
چکیده

A family 3 beta-glucosidase (EC 3.2.1.21) from Flavobacterium meningosepticum has been cloned and overexpressed. The mechanistic action of the enzyme was probed by NMR spectroscopy and kinetic investigations, including substrate reactivity, secondary kinetic isotope effects and inhibition studies. The stereochemistry of enzymic hydrolysis was identified as occurring with the retention of an anomeric configuration, indicating a double-displacement reaction. Based on the k(cat) values with a series of aryl glucosides, a Bronsted plot with a concave-downward shape was constructed. This biphasic behaviour is consistent with a two-step mechanism involving the formation and breakdown of a glucosyl-enzyme intermediate. The large Bronsted constant (beta=-0.85) for the leaving-group-dependent portion (pK(a) of leaving phenols >7) indicates substantial bond cleavage at the transition state. Secondary deuterium kinetic isotope effects with 2,4-dinitrophenyl beta-D-glucopyanoside, o-nitrophenyl beta-D-glucopyanoside and p-cyanophenyl beta-D-glucopyanoside as substrates were 1.17+/-0.02, 1.19+/-0.02 and 1.04+/-0.02 respectively. These results support an S(N)1-like mechanism for the deglucosylation step and an S(N)2-like mechanism for the glucosylation step. Site-directed mutagenesis was also performed to study essential amino acid residues. The activities (k(cat)/K(m)) of the D247G and D247N mutants were 30000- and 200000-fold lower respectively than that of the wild-type enzyme, whereas the D247E mutant retained 20% of wild-type activity. These results indicate that Asp-247 is an essential amino acid. It is likely that this residue functions as a nucleophile in the reaction. This conclusion is supported by the kinetics of the irreversible inactivation of the wild-type enzyme by conduritol-B-epoxide, compared with the much slower inhibition of the D247E mutant and the lack of irreversible inhibition of the D247G mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the catalytic nucleophile of the Family 31 alpha-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate.

The mechanism-based reagent 5-fluoro-alpha-d-glucopyranosyl fluoride (5F alpha GlcF) was used to trap a glycosyl-enzyme intermediate and identify the catalytic nucleophile at the active site of Aspergillus niger alpha-glucosidase (Family 31). Incubation of the enzyme with 5F alpha GlcF, followed by peptic proteolysis and comparative liquid chromatography/MS mapping allowed the isolation of a la...

متن کامل

Identification of the general acid/base catalyst of a family 3 beta-glucosidase from Flavobacterium meningosepticum.

beta-Glucosidase from Flavobacterium meningosepticum (Fbgl) (also known as Chryseobacterium meningosepticum) has been classified as a member of the family 3 glycohydrolases. It is a retaining enzyme involving a two-step, double-displacement mechanism. D247 was shown to function as the nucleophile of the enzymatic reaction [Li, Y.-K., Chir, J., and Chen, F.-Y. (2001) Biochem. J. 355, 835-840]. H...

متن کامل

The role of OXA-1 beta-lactamase Asp(66) in the stabilization of the active-site carbamate group and in substrate turnover.

The OXA-1 beta-lactamase is one of the few class D enzymes that has an aspartate residue at position 66, a position that is proximal to the active-site residue Ser(67). In class A beta-lactamases, such as TEM-1 and SHV-1, residues adjacent to the active-site serine residue play a crucial role in inhibitor resistance and substrate selectivity. To probe the role of Asp(66) in substrate affinity a...

متن کامل

Identification of catalytic residues of pepstatin-insensitive carboxyl proteinases from prokaryotes by site-directed mutagenesis.

Pepstatin-insensitive carboxyl proteinases from Pseudomonas sp. (PCP) and Xanthomonas sp. (XCP) have no conserved catalytic residue sequences, -Asp*-Thr-Gly- (Asp is the catalytic residue) for aspartic proteinases. To identify the catalytic residues of PCP and XCP, we selected presumed catalytic residues based on their high sequence similarity, assuming that such significant sites as catalytic ...

متن کامل

Molecular mechanism of enantioselective proton transfer to carbon in catalytic antibody 14D9.

Catalytic antibody 14D9 catalyzes the enantioselective protonation of prochiral enol ethers with high enantioselectivity (>99% ee) and a practical turnover (k(cat) = 0.4 s(-1)), allowing for preparative scale applications. This antibody represents one of the rare examples of catalytic antibodies promoting acid-catalyzed processes. Antibody 14D9 was cloned and expressed as a chimeric Fab fragmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 355 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001